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Tetragonal tungsten bronze (TTB) oxides are one of the most important classes

of ferroelectrics. Many of these framework structures undergo ferroelastic

transformations related to octahedron tilting deformations. Such tilting

deformations are closely related to the rigid unit modes (RUMs). This paper

discusses the whole set of RUMs in an ideal TTB lattice and possible crystal

structures which can emerge owing to the condensation of some of them.

Analysis of available experimental data for the TTB-like niobates lends

credence to the obtained theoretical predictions.

1. Introduction

The theory of second-order structural phase transitions

(SPTs) is based on the idea of the order parameter. In the case

of displacive SPTs, the order parameter is a vector defining

cooperative atomic displacements which describe the lattice

deformation during the transformation from one phase to

another. This deformation coincides (or almost coincides) with

the eigenvector of the soft mode and possesses minimal

mechanical stiffness. Hence, in order to determine the

atomistic pattern of the order parameter for a particular SPT

one should reveal the softest degree of freedom of the crystal

lattice.

The crystal structures built on oxide frameworks are lattices

formed by quasi-rigid XOn polyhedra (tetrahedra, octahedra

etc.), interconnected by common vertices or edges. It is

possible that in such a structure there exist collective atomic

displacements related to polyhedron translations and rota-

tions and not involving any polyhedron deformations. Such

deformations, called floppy modes (Cai & Thorpe, 1989) or

rigid unit modes (RUMs; Hammonds et al., 1996), are not

accompanied by length variations of the X—O bonds and the

O–O contacts. Thus, they are mechanically soft and potentially

could play the role of soft-mode eigenvectors. It is notable that

RUMs have no restoring forces only for infinitesimal defor-

mations, i.e. within harmonic approximation (Gambhir et al.,

1997).

At larger atomic displacements they inevitably couple with

the elastic strains. That is why the RUM-induced instabilities

are often triggered by external pressure or by uniaxial

compression (Mitra, 2004). A classic example of an SPT

induced by an RUM soft mode is the ferroelastic SPT in the

perovskite AXO3 structure (Giddy et al., 1993). The cubic

perovskite (CP) structure is a framework of corner-sharing

regular octahedra. In this structure, all RUMs involve

concerted rotations of the octahedra located within a layer

perpendicular to the rotational axis which may be parallel to

the a, b or c axes. The first example of RUM-induced

instability was the ferroelastic phase transition in SrTiO3

(Shirane & Yamada, 1969). Much attention was paid to the

RUM-induced ‘compressibility collapse’ in the cation-free CP

oxide crystal ReO3 (Mirgorodsky & Smirnov, 1993) and

fluoride ScF3 (Morelock et al., 2013). The family of perovskite-

like ferroelastics has now enlarged considerably. It includes

various complex oxides (titanates, zirconates, aluminates,

tantalates etc.) which display a wide variety of physical prop-

erties such as superconductivity, magnetism, ferroelectricity

and magnetoelectricity, which make them very interesting for

applications (Schranz, 2011).

Tetragonal tungsten bronze (TTB) oxides constitute one of

the most important classes of ferroelectrics next to perovs-

kites. They can also be viewed as framework lattices consisting

of corner-sharing NbO6 octahedra. However, the manner of

the octahedra arrangement within a layer of the TTB structure

(see Fig. 1a) differs from that in a perovskite structure, first by

its lower symmetry (Jamieson et al., 1968). In the c direction,

the layers within a TTB lattice are repeatedly interconnected

by sharing the apex octahedral corners. It is seen that within

this layer-like framework lattice there are pentagonal, square

and trigonal tunnels which can accommodate cations of

different sizes, respectively, denoted as M(5), M(4) and M(3).

Thus the net formula can be written as M
ð5Þ
i M

ð4Þ
j M

ð3Þ
k Nb10O30.

Because of the large choice of the inserted cations, the TTB

family presents a rich sequence of phase transitions and

includes a large number of functional crystals and materials

possessing electro-optic, pyroelectric and piezoelectric prop-

erties (Uchino, 2000).

Many TTB structures undergo ferroelastic SPTs which

transform the tetragonal lattice into orthorhombic ones. The

tetragonal-to-orthorhombic distortions are usually weak and

in some cases manifest themselves via incommensurate (INC)

structure modulations. It seems reasonable to suggest that the
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ferroelastic transformations in TTB crystals may also be

related to an RUM tilting deformation. In this crystalline

family, the important role of octahedral tilting was emphasized

(Levin et al., 2006). However, a detailed analysis of the whole

RUM spectrum in the TTB structure and the variety of

possible crystal structures induced by their condensation has

not yet been done.

This paper aims to fill this gap. It is organized as follows.

First, we describe a novel theoretical approach to the

enumeration of RUMs in an arbitrary framework crystal.

The approach is illustrated and justified by application to the

previously well studied CP structure. Subsequently, the

approach is used to determine the complete set of RUMs in

the TTB lattice. Then, all crystal structures that could arise

from an ideal tetragonal TTB lattice as a result of condensa-

tion of various RUMs are specified. Finally, these results are

compared with experimentally determined crystal structures

of the niobate TTB-like crystals.

Because of the large variability in filling the cation positions,

the ‘tungsten bronzes’ comprise a great family of compounds,

even larger than the perovskites. Thus, the approach devel-

oped in the paper will be useful to rationalize, to interpret and

even to predict the structural constitution of a large family of

crystals of scientific and applied interest. An additional point

to emphasize is that the novel approach to enumeration of

RUMs may be used equally well for other crystallographic

systems.

2. Method

The whole set of RUM-induced structures originating from

cubic perovskite was described by Glazer (1972). As an

elementary RUM deformation he considered the concerted

octahedron tilting around one of the lattice axes. The octa-

hedral rigidity condition strictly connects the tilting of octa-

hedra localized within the same layer perpendicular to the axis

of rotation but does not constrain rotations of octahedra

localized within different such layers. Thus the octahedra of

neighbouring layers may tilt in-phase, anti-phase or even with

arbitrary phase shift. Glazer introduced notations a+, a�, b+,

b�, c+ and c� for the in-phase and anti-phase octahedron

rotations, respectively, around axes oriented along the a, b and

c axes. It is noteworthy that the tilting deformations around

mutually perpendicular axes are independent. Thus, any

possible RUMs in a perovskite lattice can be determined by a

triad ’a; ’b; ’c with components determining the phase shifts

between tilt angles of neighbouring layers perpendicular to

the a, b and c axes.

Depending on the combination of ’a; ’b; ’c values, various

crystal structures can be obtained from the cubic perovskite

structure. A detailed analysis of such structures for the case

’i ¼ 0; � was presented in Glazer (1972). Many of them were

later observed for particular perovskite-like compounds. In

some cases, the octahedral tilting deformations really play the

role of the order parameter for ferroelastic phase transitions.

Later on, the concept of concerted tilting of rigid polyhedra

was generalized to be applicable for arbitrary framework

structures (Swainson & Dove, 1993). In that paper, the notion

of the RUM as a phonon mode which does not involve any

structural distortions except polyhedron rotations and trans-

lations was clearly formulated.

The question has arisen – how to determine the whole set of

RUMs for an arbitrary crystal structure? The split-atom model

was proposed to solve this problem (Giddy et al., 1993). The

essence of this approach is to view each polyhedron as a

separate rigid body and to treat the linked corners as kept

together by harmonic springs. We consider this method

somewhat unnecessarily complicated, especially for poly-

atomic structures.

We propose an alternative approach, which consists of

direct simulation of the phonon modes of a framework lattice

built of rigid XOn polyhedra. Such a method resembles the

computational scheme used previously for simulation of

floppy modes in the network glasses (Cai & Thorpe, 1989).

That method was based on the harmonic potential function in

terms of valence bonds and valence angles. Assuming finite
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Figure 1
Structure (a) and Brillouin zone (BZ) (b) of an ideal TTB crystal.



stiffness of these coordinates, the model retains zero stiffness

of the floppy modes. This approach can be used in studying

RUMs in the framework lattices. However, in this case it can

be simplified by assuming finite stiffness of larger structural

units – the entire XOn polyhedra.

In order to ensure rigidity of the polyhedra, it is sufficient to

postulate stiffness of the polyhedron’s O–O edges. For doing

this, one can assume that the apex O atoms are linked by

Hooke’s springs. All other atoms but O should be omitted.

Hooke’s stiffness coefficient K is the only free parameter of

the model. Its value must be taken so that �0 ¼ K=M (here M

is the mass of O atoms) will be much higher than the numerical

accuracy of the diagonalization procedure used.

Construction of the dynamical matrix for such a model

lattice can be readily done as follows. Let indexes k and l

numerate atoms in the unit cell, and indexes � and � denote

Cartesian components. If atoms k and l are linked by a poly-

hedron edge R then the corresponding component of the force

constant matrix is determined by the expression

Dk�;l�ðqÞ ¼ �0 exp iq � ðrk � rlÞ
� �

Gk�;l�; ð1Þ

in which rk and rl are atomic positions in the same unit cell and

G is a dimensionless structure-dependent tensor:

Gk�;l�ðqÞ ¼
X
Rkl

Rkl;�Rkl;�

R2
kl

exp iq � Rklð Þ: ð2Þ

Summation in equation (2) is over all polyhedron edges

connecting atoms k and l. For q ¼ 0 and k ¼ l the G-matrix

elements (self-interaction terms) are defined as follows:

Gk�;k�ð0Þ ¼ �
P
l 6¼k

Gk�;l�ð0Þ: ð3Þ

Upon diagonalization of the DðqÞ matrix one obtains 3N

eigenvalues �nðqÞ which correspond to squared phonon

frequencies. The essence of the proposed approach consists of

scanning q vectors over the whole Brillouin zone (BZ) and

selecting the modes with zero frequencies. All these modes are

RUMs. Their eigenvectors and corresponding q values do not

depend on particularities of the chosen potential model but

only on structural particularities of the lattice under study. A

simple but instructive example provides us with an application

of this method to the cubic perovskite lattice (see Appendix).

Acta Cryst. (2014). A70, 283–290 M. Smirnov & P. Saint-Grégoire � Tetragonal tungsten bronze crystal structures 285
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Figure 2
Eigenvectors of RUMs. Z RUMs: �+/�+ (a) and �+/0 (b). A RUMS: ��/�� (c) and ��/0 (d). R RUMs: �+/�+ (e) and �+/0 ( f ). Dashed lines show unit cells
of resulting substructures. The cations are not shown for simplicity.



3. Results and discussion

3.1. Atomistic pattern of RUMs in TTB

The starting aristotype structure is tetragonal with P4/mbm

symmetry. Most of the TTB-like compounds crystallize in this

structure at high temperature. The unit cell of this lattice and

the corresponding BZ are shown in Figs. 1(a) and 1(b). A

detailed presentation of the TTB structure can be found

elsewhere, see for example Jamieson et al. (1968). Special

points within the BZ are Z ¼ 00 1
2

� �
, A ¼ 1

2
1
2

1
2

� �
, R ¼ 0 1

2
1
2

� �
.

For all these points, the calculations revealed the existence of

two RUMs. Moreover, the calculations indicated the presence

of two RUM branches along the Z–A and R–S–R directions.

Eigenvectors of the RUMs belonging to the special BZ points

are shown in Fig. 2. Spatial patterns of these modes seem

rather complicated. Nevertheless, they can be classified in a

simple way as follows. A detailed analysis of the Z and A

RUMs shown in Figs. 2(a)–2(d) leads to the conclusion that

they can be represented as combinations of � deformations

shown in Fig. 3(a). Analogously, the R RUMs shown in Figs.

2(e)–2(f) can be represented as combinations of � deforma-

tions shown in Fig. 3(b).

It is remarkable that both � and � deformations shown in

Fig. 3 are localized in the layers perpendicular to (110) or the

ð110Þ direction. Thus, arbitrary combination of such � and �
deformations localized in different layers would give rise to an

RUM. The situation is analogous to that in the CP lattice. The

only difference is that, in a CP lattice, because of the higher

symmetry, the RUM-containing layers are stacked in three

directions (100), (010) and (001), whereas in the TTB lattice

they can be stacked only in two directions. It is important to

note that the � and � deformations localized in mutually

perpendicular layers do not overlap (in the sense that they

involve displacements of different atoms). Hence, any

combination of � and � deformations localized in the (110)

layers may be accompanied by arbitrary combination of

similar deformations localized in the ð110Þ layers, thus giving

rise to manifold different RUMs.

Analyzing the CP lattice, Glazer considered the RUMs

resulting from the in-phase and anti-phase combinations of

octahedron rotations localized in neighbouring layers. They

were labelled by indexes ‘+’ and ‘�’ attached to the vector

determining the layer orientation. Similarly, one can use the

notation �+, �+, �� and �� when describing the RUM defor-

mations in a TTB lattice. These symbols determine the type

and consequence of the concerted octahedron rotations. In

order to specify completely the RUM distortion in a TTB

lattice, one must define these symbols for the two perpendi-

cular directions (110) and ð110Þ. Below we use pairs of the

symbols separated by a slash. Zero denotes the absence of

deformations. Thus, the modes shown in Figs. 2(a) and 2(b)

must be denoted as �+/�+ and �+/0, respectively; the modes in

Figs. 2(c) and 2(d) are denoted as ��/�� and ��/0, respec-

tively; the modes in Figs. 2(e) and 2(f) as �+/�+ and �+/0,

respectively.

It should be recognized that all the above-discussed Z, A

and R RUMs are doubly degenerated. For example, the two

mutually orthogonal Z RUMs are �+/0 and 0/�+ (or �+/�+ and

�+/��+). Thus, any combination of these modes will also be a

Z RUM. This fact opens up the possibility of the existence

of combined x�+/y�+ RUMs (here x 6¼ y). Similarly x��/y��

and x�+/y�+ would give rise to A RUMs and R RUMs,

respectively.

The above notations allow us to describe the RUM phonon

branches along Z–S–A and R–S–R directions. Thus, the Z–S–

A branch in Z and A points includes the �+/0 and ��/0 modes,

respectively. In the intermediate k-points, the phonons of this

branch correspond to the �(’)/0 modes, where ’ is the phase

shift varying between 0 and �. Similarly, the RUM branch

along the R–S–R direction consists of the �(’)/0 modes, which

vary continuously between �+/0 and ��/0. The presence of the

whole RUM branches may result in the occurrence of the INC

structures with modulation vectors �; �; 0ð Þ and �; �; 0
� �

. Thus,

the whole set of RUMs in the TTB lattice includes the Z–S–A

and R–S–R phonon branches each including one RUM. These

lines are highlighted in Fig. 1(b) in red. The special points Z, A

and R are cross-points of two such lines. Thus, there are two

doubly degenerated RUMs belonging to these points. Point S

is also the cross-point of two RUM branches of a different

atomistic pattern. This fact can be considered as a kind of

accidental degeneracy.
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Figure 3
Two types of RUMs localized in the (110) layer: � RUM (a) and �
RUM (b).



3.2. Substructures induced by RUM condensation

In this section we analyze crystal structures resulting from

the condensation of different RUMs (we call them substruc-

tures). RUMs related to different combinations of the � and �
rotations are listed in Table 1. Special k-points and irreducible

representations of the RUM phonons are listed in the first

column of Table 1. Particular combinations of the � and �
RUMs are shown in the second column and the resulting

substructures are characterized in the third and fourth

columns.

The structures resulting from condensation of these RUMs

are specified by defining their unit-cell vectors and the space-

symmetry groups. In this paper we focus our attention on the

RUMs in the special k-points. All of them give rise to the

substructures with twofold unit cells. Condensation of

RUMs with longer modulation lengths (corresponding to

other k-points) will result in the occurrence of more complex

substructures.

In view of the forthcoming discussion of the experimental

data, it is interesting to consider substructures which result

from simultaneous condensations of two RUM modes. Some

of them are listed in Table 2.

The structures listed in Tables 1–2 can be considered as

resulting from the ideal tetragonal TTB lattice due to the

condensation of one or two RUMs, i.e. in the course of a

ferroelastic SPT. To our knowledge, no compound with the

TTB structure undergoes a ferroelastic SPT directly from the

tetragonal P4/mbm para-phase structure. For all such

compounds, the ferroelastic SPT is preceded by a ferroelectric

SPT. The sequence of SPTs observed on lowering temperature

is usually as follows: para-phase ! ferroelectric ! ferro-

electric/ferroelastic.

The low-temperature structures reported in the literature

correspond to ferroelectric ferroelastic phases. The hypothe-

tical substructures listed in Tables 1–2 correspond to structures

resulting from the para-phase via a ferroelastic SPT. In order

to compare them with the structures determined experimen-

tally, we must take into account structural distortions induced

by ferroelectric SPTs. In fact, there is a good reason to think

that structural distortions induced by ferroelastic and ferro-

electric transformations are not coupled. Indeed, the former

consists of concerted octahedron rotations (i.e. primarily

involves displacements of oxygen atoms), and the latter

involves primarily displacements of the cation atoms from

their symmetric positions in the centres of the lattice voids as

well as niobium-atom displacements from the centres of

octahedra. The symmetry reduction induced by a possible

ferroelectric distortion polarized along a given direction can

be easily taken into account by eliminating the symmetry

operations which do not keep this direction invariant.

Subgroups determined thus are listed in Table 3.

3.3. Overview of crystal structures of TTB-
like niobates

Some of the structures listed in Table 3

can be found among crystal structures

discovered experimentally for various

TTB niobate compounds. Some of these

compounds are listed in Table 4. Crystal

structures of these compounds are collected

in Table 5.

Comparing Tables 5 and 3, one can draw

the following conclusions:

(i) The RUM-induced structures should

be accompanied by a doubling of the unit

cell in the c direction. Hence, the structures

1–4 and 7 (No. in Table 5) cannot be directly

related to any RUM-induced ferroelastic

structure.
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Table 3
Space groups of ferroelastic ferroelectric substructures for different polarization directions.

Spontaneous polarization direction

as; bs; cs Ferroelastic substructures as bs cs

1, 1, 2 D16
2h Pbnm (62) C2

2v P21am (26) C2
2v Pb21m (26) C9

2v Pbn21 (33)ffiffiffi
2
p
;
ffiffiffi
2
p
; 2 D17

2h Ccmm (63) C14
2v C2mm (38) C14

2v Cm2m (38) C12
2v Ccm21 (36)ffiffiffi

2
p
;
ffiffiffi
2
p
; 2 C5

4h I4/m (87) C3
2 I112 (5) C3

2 I112 (5) C5
4 I4 (79)ffiffiffi

2
p
;
ffiffiffi
2
p
; 2 D28

2h Ibmm (74) C20
2v I2mm (44) C22

2v Ic2m (46) C22
2v Ibm2 (46)

1, 2, 2 C12
2v A21am (36) C12

2v A21am (36) C3
s A11m (8) C4

s A1a1 (9)

1, 2, 2 C3
2h A112/m (12) C3

s A11m (8) C3
s A11m (8) C3

2 A112 (5)ffiffiffi
2
p
;
ffiffiffi
2
p
; 2 D16

2h Pcmn (62) C2
2v P21ma (26) C9

2v Pc21n (33) C2
2v Pcm21 (26)

1, 2, 2 C2
2h P1121/m (11) C1

s P11m (6) C1
s P11m (6) C2

2 P1121 (4)

2, 2, 2 C1
2h P112/m (10) C1

s P11m (6) C1
s P11m (6) C1

2 P112 (3)

2
ffiffiffi
2
p
;
ffiffiffi
2
p
; 2 D17

2h Bbmm (63) C12
2v Bm2m (35) C12

2v Bb21m (36) C16
2v Bbm2 (40)

2
ffiffiffi
2
p
; 2

ffiffiffi
2
p
; 2 C3

2h B112/m (12) C3
s B11m (8) C3

s B11m (8) C3
2 B112 (5)

Table 2
Substructures resulting from condensation of two RUMs.

k-points RUM as; bs; cs Substructure

Z;A �+/�� a� b; aþ b; 2c Pcmn (No. 62)
Z;R �+/�+ a; 2b; 2c P1121/m (No. 11)
A;R ��/�+ 2a; 2b; 2c P112/m (No. 10)
S;R �+��/�+ 2ða� bÞ; aþ b; 2c Bbmm (No. 63)
S; S �+��/�+�� 2ða� bÞ; 2ðaþ bÞ; 2c B112/m (No. 12)

Table 1
Substructures resulting from the single RUM condensation.

a, b, c are unit-cell vectors of the parent tetragonal structure and as; bs; cs are
unit-cell vectors of the resulting substructures. IR = irreducible representation.

k-point and IR RUM as; bs; cs Substructure

Z ¼ 00 1
2

� �
IR Z5+ �+/�+ a; b; 2c Pbnm (No. 62)

�+/0 a� b; aþ b; 2c Ccmm (No. 63)
x�+/y�+ a; b; 2c P1121/m (No. 11)

A ¼ 1
2

1
2

1
2

� �
IR A5+ ��/�� a� b; aþ b; 2c I4/m (No. 87)

��/0 a� b; aþ b; 2c Ibmm (No. 74)
x��/y�� a� b; aþ b; 2c C112/m (No. 12)

R ¼ 0 1
2

1
2

� �
IR R1 �+/�+ a; 2b; 2c A21am (No. 36)

�+/0 a; 2b; 2c A112/m (No. 12)
x�+/y�+ a; 2b; 2c A11m (No. 8)



(ii) With the exception of structures shown in the first line of

Table 3, unit-cell parameters of the RUM-induced structures

should differ from those of the parent tetragonal structure.

Hence, the structures 1–3 and 11 cannot be directly related to

any RUM-induced ferroelastic structure.

(iii) Structures 5, 8 and 9 can be truly considered as RUM-

induced structures.

(iv) The structure Bmm2 is very close to the RUM-induced

structure Bbm2. In fact, the latter was considered in Bursill &

Lin (1987) as a possible alternative but was rejected (in our

opinion erroneously).

(v) The structure Im2a is equivalent to the RUM-induced

structure Ic2m but corresponds to twice larger a and b para-

meters. This may be caused by a hidden commensurate

structure modulation.

The RUM distortions are soft. They are numerous among

the phonon states of a TTB-like lattice. Therefore, they can

give rise to various structural fluctuations, static as

well as dynamic. Such fluctuations may condense in a

regular periodic superstructure or may induce an INC

modulation. Equally, the structural fluctuations may lead

to a state with a random spatial distribution having a static

or a dynamic character. In such a case, they would result in

unusually large and highly anisotropic atomic displacement

parameters or even may appear in the results of crystal

structure resolution as a spatial split of some atomic

positions.

Atomic displacements during the tilting oscillations of

octahedra involved in RUMs are shown in Fig. 4 by arrows. It

is clear that the equatorial oxygen atoms (shown as filled

circles) have maximal amplitudes in the vertical direction

(along the c axis) and the apex oxygen atoms (shown as open

circles) have maximal amplitudes in the horizontal direction

(in the ab plane). One can find similar relations between

atomic displacement parameters in the published TTB struc-

tures which do not involve the c parameter doubling

(Podlozhenov et al., 2006; Elaatmani et al., 2003). In all cases

when the anisotropic mean square amplitudes were deter-

mined, the amplitudes of equatorial oxygen atoms were found

markedly larger in the c direction and those of the apex

oxygen atoms are larger in the perpendicular direction. This

fact allows us to suggest the presence of a hidden structural

disorder, static or dynamic. The latter case implies large-

amplitude oscillations dictated by RUMs.

Structures with split oxygen positions merit a special

discussion. The presence of such splittings suggests that the

reported structure is in fact an average of two (or several)

ordered structures corresponding to opposite signs of RUM

distortions. A detailed analysis of such disordered structures

leads to the determination of possible ordered constituents.

The disordered Cmm2 structure (the case of Ba2NaNb5O15,

BNN) proposed in Jamieson et al. (1969) is an example.

According to the chosen combination of RUM

signs it can be represented as an average of two

ordered Ccm21 structures or of two ordered

Bbm2 structures.

In some studies, structures of the TTB crys-

tals were determined as belonging to the P4bm

space group. This is a ferroelectric structure

with a polar axis parallel to (001). Such a

structure may be thought to originate from the

para-electric phase without any ferroelastic

distortion. However, diffraction experimental

data and subsequent structure refinements

(Podlozhenov et al., 2006; Elaatmani et al.,

2003; Jamieson et al., 1968) show that in

these structures the oxygen thermal amplitudes

are considerably anisotropic, which is quite

consistent with a mechanism of condensation

of RUMs as discussed above. Moreover, the
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Table 4
List of the TTB-like crystalline niobates.

Re = Bi, La, Nd, Sm and Gd.

Compound Notation

Ba4Na2Nb10O30 BNN
(Ba0.67Sr0.33)5Nb10O30 BSN
(Sr0.67Ba0.33)5Nb10O30 SBN
Pb4K2Nb10O30 PKN
Pb2K4Li2Nb10O30 PKLN
(Ca0.28Ba0.72)5Nb10O30 CBN
(Ba0.67Re0.33)5(TiNb)10O30 BRTN

Table 5
Crystal structures of TTB niobates according to experimental data.

No. Compound Space group as, bs, cs

SP
direction

Order/
disorder Reference

1 BNN, BSN, PKLN P4bm (100) 1, 1, 1 cs Order I, II, III
2 BNN, PKLN Pba2 (32) 1, 1, 1 cs Order I, IV
3 SBN P4bm (100) 1, 1, 1 cs Disorder V, VI
4 BNN Cmm2 (35)

ffiffiffi
2
p
;
ffiffiffi
2
p
; 1 cs Disorder VII

5 BNN, SBN Ccm21 (36)
ffiffiffi
2
p
;
ffiffiffi
2
p
; 2 cs Order VIII, IX

6 SBN, CBN Bmm2 (38)
ffiffiffi
2
p
; 2

ffiffiffi
2
p
; 2 cs Order INC IX, X

7 PKN Cm2m (38)
ffiffiffi
2
p
;
ffiffiffi
2
p
; 1 bs Order XI

8 BNN Bbm2 (40) 2
ffiffiffi
2
p
;
ffiffiffi
2
p
; 2 cs Order XII

9 SBN Im2a (46) 2
ffiffiffi
2
p
; 2

ffiffiffi
2
p
; 2 bs Order XIII

10 BRTN Im2a (46)
ffiffiffi
2
p
;
ffiffiffi
2
p
; 2 cs Order XIV

11 SBN P4bm (100) 1, 1, 2 cs INC XV

I, Foulon et al. (1996); II, Podlozhenov et al. (2006); III, Elaatmani et al. (2003); IV, Gagou et al. (2001); V,
Jamieson et al. (1968); VI, Chernaya et al. (1997); VII, Jamieson et al. (1969); VIII, Toledano (1975); IX, Bursill
& Lin (1987); X, Lu et al. (2006); XI, Sciau et al. (1999); XII, Labbe et al. (1989); XIII, Bursill & Lin (1987);
XIV, Levin et al. (2006); XV, Woike et al. (2003).

Figure 4
The octahedron as a basic structural unit of the TTB structure. The apex
and equatorial oxygen atoms are shown by open and filled circles,
respectively. Atomic oscillations involved in RUMs are shown by arrows.



presence of an INC modulation was found in some SBN

structures (Levin et al., 2006; Woike et al., 2003; Schefer et al.,

2008) and it is remarkable that the directions of this modu-

lation were found to be (110) and ð110Þ. This is in full agree-

ment with our suggestion of possible RUM-induced INC

structure variations.

4. Summary and conclusion

Lattice dynamics calculations reveal the existence of rigid unit

modes in TTB crystal lattices. These phonon modes can be

represented as spatially modulated combinations of the

elementary vibrations. These are concerted rotations of

the octahedra localized in narrow layers perpendicular to the

(110) and ð110Þ directions. This particularity results in the

occurrence of two RUM phonon branches along the R–S–R

and X–S–L lines in the BZ of a TTB lattice.

The RUM-induced substructures, i.e. crystal structures

resulting from an ideal tetragonal TTB lattice owing to the

condensation of different RUMs, are specified. The analysis of

available experimental data for TTB-like niobate crystals

showed that some of these structures do coincide with the

RUM-induced structures. Other cases, with disordered atomic

positions, may be interpreted as being due to the condensation

of several RUMs and would thus correspond to structures

averaged over several RUM-induced structures. This novel

result allows us to suggest that the proposed scheme of RUM-

induced structures will be useful for the unified classification

of TTB-related crystal structures.

APPENDIX A
As an example, let us consider the cubic perovskite lattice.

There are three O atoms per unit cell. Every O atom belongs

to two octahedra and forms eight O–O edges (see Fig. 5). For

example, every O1 atom forms four O1–O2 and four O1–O3

edges etc. Thus, the sums in equation (1) include four terms.

Accomplishing the summation, one obtains the G matrix

which can be represented in block form:

G ¼

G11 G12 G13

G12 G22 G23

G13 G23 G33

0
@

1
A;

where

G12 ¼

Axy Bxy 0

Bxy Axy 0

0 0 0

0
B@

1
CA; G13 ¼

Axz 0 Bxz

0 0 0

Bxz 0 Axz

0
B@

1
CA;

G23 ¼

0 0 0

0 Ayz Byz

0 Byz Ayz

0
B@

1
CA;

A�� ¼ � cos 1
2q�a
� �

cos 1
2q�a
� �

;

B�� ¼ sin 1
2q�a
� �

sin 1
2q�a
� �

and a is the unit-cell parameter.

We fixed �0 ¼ 1 and diagonalized the D matrix for the q

vector running over different symmetry directions within the

BZ. The calculated �nðqÞ dependencies are shown in Fig. 6. It

is seen that the condition �nðqÞ ¼ 0 is fulfilled at M and R

points [q ¼ ð12;
1
2; 0Þ and q ¼ ð12;

1
2;

1
2Þ] and along the whole

M–R–M lines. This result agrees with the conclusions

obtained previously within the split-atom approach (Giddy et

al., 1993).
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